
Shortest Paths in Acyclic Graphs



So far we have been trying to be very general 
with our graph algorithms, proceeding from 
graphs with no weights to graphs with only non-
negative weights to graphs with any edge 
weights, positive or negative.  The algorithms 
have become increasingly expensive as they 
became more general.



Here we back away from generality and give an 
algorithm that doesn't work for all graphs, but 
where it does work is efficient and simple to 
implement.  



Suppose our graph has no cycles.  This means it 
has a topological sort -- an ordering of the nodes 
consistent with the edges of the graph.  Now 
consider what would happen if we processed 
the nodes of the graph in the order given by a 
topological sort.  

By the time we process a node, we would have 
already processed every node that has a path 
leading to it.  This means we would have 
considered every path to this node and will 
know the cheapest path from the source to it, 
regardless of whether the weights are positive 
or negative.



Remember the topological sort algorithm. We can use 
any structure we wish to maintain a WorkingSet.  We 
start this set with all nodes that have no incoming 
edges.  We know an acyclic directed graph must have at 
least one such node.

One at a time, we remove node X from the WorkingSet.  
We delete its outgoing edges and add to the working 
set any unprocessed node that now has no incoming 
edges.    This continues until the queue empties.  If 
some of the nodes of the graph have not been 
processed it must have a cycle.



We don't want to destroy our graph, so instead 
of deleting edges we store in each node an 
incoming edge count and decrement this each 
time the algorithm says we should delete an 
edge.  When a node's incoming edge count is 
zero we add it t the WorkingSet.  



For our shortest path algorithm we will use a 
simple linked-list queue for the WorkingSet, as it 
gives us constant-time insert and remove 
operations.  We start the algorithms by walking 
through the edges of the graph to build the 
incoming edge count values  and then to add to 
the queue any nodes with 0 incoming edges.

We give every node a cost, which initially is 
INFINITY for every node except the source node, 
which gets cost 0.  



We take nodes out of the queue one at a 
time, walk through their outgoing edges 
and decrement the edge counts of each of 
the nodes at the end of their outgoing 
edges.   Any node whose edge count 
becomes 0 is added to the queue.

This much is just the usual topological sort 
algorithm.  We now add information that 
gets us the shortest path from a source 
node S.



Suppose we remove node X from the queue, 
and X has cost c, which is less than INFINITY. If 
there is an edge from X to Y with weight w, we 
compare Y's current cost with c+w.  If c+w is 
smaller, we make Y's current cost c+w and 
make X Y's predecessor.

By the time Y goes into the queue, every 
possible path from the source to Y will have 
been examined, so Y's cost estimate will be the 
minimum cost from the source to Y.
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For example, consider the following graph.

One possible topological ordering of the 
nodes is 
A B C D E G F

Let's find the minimum cost paths from A to 
each node.
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Node A has cost 0.  When it comes out of the queue we 
give costs to its adjacent nodes, B, D, and F:

A  B  C  D  E  G  F
0  4      -2           5

Next B comes out of the queue.  Its cost of 4 is frozen.  
We give C a cost of 6.  We don't change the cost of D 
because the path to D through B is more expensive. 
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A  B  C  D  E  G  F
0  4  6  -2          5

C is the next node to come out of the queue, giving a 
cost of 16 to E.  

A  B  C  D  E  G  F
0  4  6 -2  16     5

When D comes out of the queue we update the costs of 
E and G:



A  B  C  D  E  G  F
0  4  6 -2  0  2   5
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E gives a path of cost 1 to G; G gives a path of cost 2 to F.  
Our final costs are

A  B  C  D  E  G  F
0  4  6 -2  0  1   2



How long does this take?  We walk along every 
edge; every step is constant time.  Our 
algorithm runs in time O( |E| ).  Note how much 
better this is than our negative-weight 
algorithm.  This handles positive and negative 
weights, though it will not handle any graph for 
which there is a cycle.


